🤖 LLM Model Selection Guide (2025 Q2)#
Only pay for the power you need—this guide distills public benchmarks, vendor docs, and independent evaluations so you can juggle price, speed, context window, multimodality, tool-use, and raw reasoning in seconds.
🗺️ Quick-pick matrix#
Need this most | Pick this model | Why |
---|
⚡ Sub-300 ms, < $0.001 | Gemini 2.0 Flash Lite · Claude 3 Haiku | First-token latency ≈ 0.25 s; rock-bottom cost |
🧠 Elite reasoning (budget ≠ issue) | Claude 3 Opus / 3.7 Sonnet IR | Top scores on MMLU, GPQA, HumanEval |
📚 ≥ 1 M-token context | Gemini 1.5 Flash / Pro | Up to 2 M tokens (1 M input + 1 M output); multimodal |
🖥️ Self-host / on-prem | Llama 3 70B Instruct | Open weights, GPT-3.5-grade accuracy |
🔍 Turn-key RAG | Cohere Command R / R-Plus | Built-in retrieval & function-calling; 128 K context |
💵 AWS-native, 32 K context | Amazon Nova Pro | Runs inside Bedrock; IAM, VPC, KMS integration |
🐍 Bilingual EN-ZH coding | DeepSeek R1-V1 | 90 % MMLU, 97 % MATH500; open weights |
Google · Gemini family#
Gemini 2.0 Flash Lite • 1 M ctx#
Multimodal: text + image + audio in, text out
Tool use: Native function-calling (JSON schema)
Benchmarks: MMLU-Pro 71.6 %; HiddenMath 55 %
Strengths: fastest Gemini, cheapest; watermarking on media
Caveats: shallower reasoning vs Flash/Pro
Gemini 2.0 Flash • 1 M ctx#
2× speed of 1.5 Pro; adds multimodal output (image & speech)
MMLU-Pro 77.6 %; HiddenMath 63.5 %
Parallel search/tool calls improve accuracy & grounding
Gemini 1.5 Flash 8B / Flash • 1.5 M ctx#
Distilled from 1.5 Pro; sweet-spot cost/quality
MMLU-Pro 67 %; good for RAG over giant PDFs & video
Gemini 1.5 Pro • 2 M ctx#
First model past 90 % MMLU; excels in code & long-form reasoning
Closed beta; pricey & slower
Anthropic · Claude 3 / 3.5 / 3.7 line#
Model | Context | Benchmarks* | Multimodal | Tool use | Notes |
---|
Haiku | 200 K | 55 % MMLU | Text | ⚙︎ (prompt-level) | Sub-sec, budget tier |
Sonnet 3.5 | 200 K | 78 % MMLU, 64 % HumanEval | Vision SOTA (June 24) | ⚙︎ | Mid-tier; beats 3 Opus |
Sonnet 3.7 IR | 200 K (+128 K CoT) | ≈ GPT-4 on hard maths | Vision | ⚙︎ + Integrated reasoning switch | Fast or reflective modes |
Opus 3.0 | 100 K | 80 % MMLU | Vision | ⚙︎ | Deep reasoning, higher latency |
*percentages are representative single-shot scores.Alignment & safety#
All Claude 3 models use Constitutional AI; 3.7 adds “Constitutional Classifiers” → toughest to jailbreak among majors.
DeepSeek · R1-V1 (open)#
Arch: 37 B active · 671 B MoE, 128 K ctx
Benchmarks: 90.8 % MMLU, 97 % MATH500, Codeforces 96th pct
Tool use: No native JSON schema, but excels with ReAct prompts
Safety: minimal RLHF → add your own moderation
Llama 3 Instruct#
Size | Context | MMLU | HumanEval | Best for |
---|
1 B / 8 B | 128 K | 60 % | 20-30 % | Edge, CPU, tagging |
70 B | 128 K | 85 % | 50 % | Self-hosted RAG, privacy |
Llama 4 Scout 17 B • 10 M ctx#
Multimodal text + image, 12 langs
Benchmarks: Outperforms Llama 3 70B; SOTA ≤20 B class
Tool use: Designed for agents; Bedrock/Azure endpoints
Llama 4 Maverick 17 B • 1 M ctx#
128-expert MoE, higher accuracy vs Scout, slightly slower
Aims at GPT-4 class while 3-4× cheaper
Cohere · Command family#
Model | Params | Context | Benchmarks | Tool use | Niche |
---|
Light | ~ ? B | 4 K | 55 % MMLU | Prompt-level | Cheap chat, routing |
R | 35 B | 128 K | 75 % MMLU, top Arena (’24) | Native func-call, cites sources | Long-doc RAG |
R Plus | 104 B | 128 K | ≈ GPT-4 on RAG, 2× faster | Multi-step, self-correct | Frontier RAG & agents |
Amazon · Nova series#
Model | Context | Multimodal | Benchmarks (≈) | Fine-tune | Ideal |
---|
Micro | 128 K | ❌ | Beats GPT-4o-mini by ≈2 % | ✔︎ text | Low-latency bulk chat |
Lite | 300 K | ✔︎ (image + video) | Strong vis-text, < Nova Pro | ✔︎ text+vision | Doc & media analysis |
Pro | 300 K | ✔︎✔︎ | Near GPT-4o on RAG, 2× faster, 65 % cheaper | ✔︎ | Enterprise, multilingual, agents |
🛠️ Cost-saving tips#
1.
Prototype on Flash Lite / Haiku then upgrade only where accuracy gaps appear.
2.
Keep sessions alive try to use sessions with your ingested data instead of creating new ones and ingesting the same.
3.
Don't repeat ingestion don't forget to skip ingestion if you already did it t avoid re-processing and more token usage.
4.
Optimize your data the less the best.
Sources: Google DeepMind, Anthropic (Claude 3.7 IR white-paper), DeepSeek-AI, Meta AI (Llama 3 & 4 model cards), Cohere tech blog, AWS re:Invent 2024 Nova launch, FloTorch CRAG benchmark.Modified at 2025-05-08 07:17:54